127 research outputs found

    Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles

    Get PDF
    Micro aerial vehicles (MAVs) are ideal platforms for surveillance and search and rescue in confined indoor and outdoor environments due to their small size, superior mobility, and hover capability. In such missions, it is essential that the MAV is capable of autonomous flight to minimize operator workload. Despite recent successes in commercialization of GPS-based autonomous MAVs, autonomous navigation in complex and possibly GPS-denied environments gives rise to challenging engineering problems that require an integrated approach to perception, estimation, planning, control, and high level situational awareness. Among these, state estimation is the first and most critical component for autonomous flight, especially because of the inherently fast dynamics of MAVs and the possibly unknown environmental conditions. In this thesis, we present methodologies and system designs, with a focus on state estimation, that enable a light-weight off-the-shelf quadrotor MAV to autonomously navigate complex unknown indoor and outdoor environments using only onboard sensing and computation. We start by developing laser and vision-based state estimation methodologies for indoor autonomous flight. We then investigate fusion from heterogeneous sensors to improve robustness and enable operations in complex indoor and outdoor environments. We further propose estimation algorithms for on-the-fly initialization and online failure recovery. Finally, we present planning, control, and environment coverage strategies for integrated high-level autonomy behaviors. Extensive online experimental results are presented throughout the thesis. We conclude by proposing future research opportunities

    Towards View-invariant and Accurate Loop Detection Based on Scene Graph

    Full text link
    Loop detection plays a key role in visual Simultaneous Localization and Mapping (SLAM) by correcting the accumulated pose drift. In indoor scenarios, the richly distributed semantic landmarks are view-point invariant and hold strong descriptive power in loop detection. The current semantic-aided loop detection embeds the topology between semantic instances to search a loop. However, current semantic-aided loop detection methods face challenges in dealing with ambiguous semantic instances and drastic viewpoint differences, which are not fully addressed in the literature. This paper introduces a novel loop detection method based on an incrementally created scene graph, targeting the visual SLAM at indoor scenes. It jointly considers the macro-view topology, micro-view topology, and occupancy of semantic instances to find correct correspondences. Experiments using handheld RGB-D sequence show our method is able to accurately detect loops in drastically changed viewpoints. It maintains a high precision in observing objects with similar topology and appearance. Our method also demonstrates that it is robust in changed indoor scenes.Comment: Accepted by ICRA202
    • …
    corecore